230

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Shrestha, A., Khan, A., & Dey, N., (2014). Cis-trans engineering: Advances and perspectives

on customized transcriptional regulation in plants. Mol. Plant., 11, 886–898.

Shrivastava, P., & Kumar, R., (2015). Soil salinity: A serious environmental issue and plant

growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci., 22,

123–131.

Singer, M. A., & Lindquist, S., (1998). Thermotolerance in Saccharomyces cerevisiae: The

yin and yang of trehalose. Trends Biotechnol., 16, 460–468.

Singh, A. K., Sharma, V., Pal, A. K., Acharya, V., & Ahuja, P. S., (2013). Genome-wide

organization and expression profiling of the NAC transcription factor family in potato

(Solanum tuberosum L.). DNA Res., 20, 403–423.

Singh, K., Foley, R. C., & Oñate-Sánchez, L., (2002). Transcription factors in plant defense

and stress responses. Curr. Opin. Plant Biol., 5, 430–436.

Smart, C. C., & Flores, S., (1997). Overexpression of D-myo-inositol-3-phosphate synthase

leads to elevated levels of inositol in Arabidopsis. Plant Mol. Biol., 33, 811–820.

So, H., & Lee, J., (2019). NAC transcription factors from soybean (Glycine max L.)

differentially regulated by abiotic stress. J. Plant Biol., 62, 147–160.

Stiller, I., Dulai, S., Kondrák, M., Tarnai, R., Szabó, L., Toldó, O., & Bánfalvi, Z., (2008).

Effects of drought on water content and photosynthetic parameters in potato plants

expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta,

227, 299–308.

Su, J., Hirji, R., Zhang, L., He, C., Selvaraj, G., & Wu, R., (2006). Evaluation of the stress-

inducible production of choline oxidase in transgenic rice as a strategy for producing the

stress-protectant glycinebetaine. J. Exp. Bot., 57, 1129–1135.

Suárez, R., Calderón, C., & Iturriaga, G., (2009). Enhanced tolerance to multiple abiotic

stresses in transgenic alfalfa accumulating trehalose. Crop Sci., 49, 1791–1799.

Sun, J., Hu, W., Zhou, R., Wang, L., Wang, X., Wang, Q., Feng, Z. J., et al., (2014). The

Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic

tobacco plants. Plant Cell Rep., 34, 23–35.

Sun, P., Zhu, X., Huang, X., & Liu, J. H., (2014). Overexpression of a stress-responsive

MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance

and increases polyamine biosynthesis. Plant Physiol. Biochem., 78, 71–77.

Sun, Y., & Yu, D., (2015). Activated expression of AtWRKY53 negatively regulates drought

tolerance by mediating stomatal movement. Plant Cell Rep., 34, 1295–1306.

Sun, Y., Zhao, J., Li, X., & Li, Y., (2020). E2 conjugases UBC1 and UBC2 regulate MYB42­

mediated SOS pathway in response to salt stress in Arabidopsis. New Phytol., 227, 455–472.

Suzuki, N., Bajad, S., Shuman, J., Shulaev, V., & Mittler, R., (2008). The transcriptional

co-activator mbf1c is a key regulator of the thermotolerance in Arabidopsis thaliana. J.

Biol. Chem., 283, 9269–9275.

Suzuki, N., Miller, G., Salazar, C., Mondal, H. A., Shulaev, E., Cortes, D. F., Shuman, J. L., et

al., (2013). Temporal-spatial interaction between reactive oxygen species and abscisic acid

regulates rapid systemic acclimation in plants. Plant Cell, 25, 3553–3569.

Tang, G. Y., Shao, F. X., Xu, P. L., Shan, L., & Liu, Z. J., (2017). Over-expression of a

peanut NAC Gene, AhNAC4, confers enhanced drought tolerance in tobacco. Rus. J. Plant

Physiol., 64, 525–535.

Tang, Y., Bao, X., Zhi, Y., Wu, Q., Guo, Y., Yin, X., Zeng, L., Li, J., Zhang, J., He, W., et al.,

(2019). Overexpression of a MYB family gene, OsMYB6, increases drought and salinity

stress tolerance in transgenic rice. Front. Plant Sci., 10, 168.